<table>
<thead>
<tr>
<th>Lesson: NASA’s Space Based Astronomy Unit 1: The Atmospheric Filter</th>
<th>Science Content Standards:</th>
</tr>
</thead>
</table>
| **Grade 4:** | ● make observations to provide evidence of transfer of energy from place to place by sound, light, heat, and electric currents
 ● develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move
 ● develop a model communicating that light reflected from objects into the eye allows objects to be seen |
| **Grades 9-12:** | ● use mathematical representations to support a claim regarding relationships among the frequency, amplitude, wavelength, and speed of waves traveling in various media
 ● communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy |

<table>
<thead>
<tr>
<th>Lesson: NASA’s Space Based Astronomy Unit 2: The Electromagnetic Spectrum</th>
<th>Science Content Standards:</th>
</tr>
</thead>
</table>
| **Grade 4:** | ● make observations to provide evidence of transfer of energy from place to place by sound, light, heat, and electric currents
 ● develop a model communicating that light reflected from objects into the eye allows objects to be seen |
| **Grade 5:** | ● use evidence or models to support the claim that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth |
| **Grades 6-8:** | ● use mathematical representations to describe a simple model for waves that includes how the |
amplitude and wavelength of a wave is related to the energy in a wave. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Grades 9-12:
- Use mathematical representations to support a claim regarding relationships among the frequency, amplitude, wavelength, and speed of waves traveling in various media.
- Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
- Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.

Mathematics Theme Groups (adjustable by grade):
- Measurement
- Connections
- Data analysis, statistics, and probability
- Patterns, functions, and algebra
- Geometry and spatial sense

NASA’s *Space Based Astronomy*
Unit 3: Collecting Electromagnetic Radiation

Science Content Standards:

Grade 4:
- Make observations to provide evidence of transfer of energy from place to place by sound, light, heat, and electric currents.
- Develop a model communicating that light reflected from objects into the eye allows objects to be seen.
- Generate and compare multiple solutions that use patterns to transfer information.

Grades 6-8:
- Use mathematical representations to describe a simple model for waves that includes how the amplitude and wavelength of a wave is related to the energy in a wave. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Grades 9-12:
NASA’s *Space Based Astronomy*

Unit 4: Down to Earth

Science Content Standards:

Grade 4:
- make observations to provide evidence of transfer of energy from place to place by sound, light, heat, and electric currents
- use mathematical representations to support a claim regarding relationships among the frequency, amplitude, wavelength, and speed of waves traveling in various media
- communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy

Mathematics theme groups (adjustable by grade):
- Number & operation
- Patterns, function, & algebra
- Measurement
- Data analysis, statistics, & probability
- Communication
- Connections
- Representations

How Light Moves

Science Content Standards:

Grade 4:
- make observations to provide evidence of transfer of energy from place to place by sound, light, heat, and electric currents

Grade 5:
<table>
<thead>
<tr>
<th>Build a Spectroscope</th>
<th>Science Content Standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4:</td>
<td>● develop a model communicating that light reflected from objects into the eye allows objects to be seen</td>
</tr>
<tr>
<td></td>
<td>Grades 9-12:</td>
</tr>
<tr>
<td></td>
<td>● communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discovering Color with a Prism</th>
<th>Science Content Standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4:</td>
<td>● develop a model communicating that light reflected from objects into the eye allows objects to be seen</td>
</tr>
<tr>
<td>Grades 9-12:</td>
<td>● communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength and Energy</th>
<th>Science Content Standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4:</td>
<td>● develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move</td>
</tr>
<tr>
<td>Grade 5:</td>
<td>● use evidence or models to support the claim that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth</td>
</tr>
</tbody>
</table>
| **Grades 9-12:** | **Lesson:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>● use mathematical representations to support a claim regarding relationships among the frequency, amplitude, wavelength, and speed of waves traveling in various media</td>
<td>NASA’s Electromagnetic Math</td>
</tr>
<tr>
<td>● communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy</td>
<td></td>
</tr>
</tbody>
</table>

Mathematical theme groups:
note: a detailed topic matrix is available on page 8 of the instructional guide

<table>
<thead>
<tr>
<th>Grades 6-8:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>● work flexibly with fractions, decimals, and percents to solve problems;</td>
<td></td>
</tr>
<tr>
<td>● understand and use ratios and proportions to represent quantitative relationships;</td>
<td></td>
</tr>
<tr>
<td>● develop an understanding of large numbers and recognize and appropriately use exponential, scientific, and calculator notation;</td>
<td></td>
</tr>
<tr>
<td>● understand the meaning and effects of arithmetic operations with fractions, decimals, and integers;</td>
<td></td>
</tr>
<tr>
<td>● develop, analyze, and explain methods for solving problems involving proportions, such as scaling and finding equivalent ratios.</td>
<td></td>
</tr>
<tr>
<td>● represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules;</td>
<td></td>
</tr>
<tr>
<td>● model and solve contextualized problems using various representations, such as graphs, tables, and equations.</td>
<td></td>
</tr>
<tr>
<td>● use graphs to analyze the nature of changes in quantities in linear relationships.</td>
<td></td>
</tr>
<tr>
<td>● understand both metric and customary systems of measurement;</td>
<td></td>
</tr>
<tr>
<td>● understand relationships among units and convert from one unit to another within the same system;</td>
<td></td>
</tr>
</tbody>
</table>
Grades 9-12:

- judge the reasonableness of numerical computations and their results.
- generalize patterns using explicitly defined and recursively defined functions;
- analyze functions of one variable by investigating rates of change, intercepts, zeros, asymptotes, and local and global behavior;
- understand and compare the properties of classes of functions, including exponential, polynomial, rational, logarithmic, and periodic functions;
- draw reasonable conclusions about a situation being modeled.